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Summary: Molybdenum pentacarbonyl-trimethylamine 
promotes the cyclization of 1-alkyn-4-01s to the isomeric 
2,3-dihydrofurans. 

One of our research programs in cyclic ether synthesis 
requires a general cycloisomerization method for con- 
verting acyclic alkynols to endocyclic enol ethers. Ap- 
plications of endocyclic enol ethers in synthetic organic 
chemistry include construction of glycoconjugates2 as well 
as various polyether natural p r ~ d u c t s . ~  A survey of the 
literature suggests a two-step procedure featuring cy- 
clization of terminal alkynols to the corresponding pen- 
tacarbonylchromium oxacarbenes? a followed by pyridine- 
induced conversion to enol ethers (eq lh5t6 

OH Et20:Cr(CO)5 pyridine 

L H  (ref.&) * %:r(c0)5 QH ( I )  

H (ref. sa) H 
+ C5H5N:Cr(C0)5 

Herein we report our initial results with a reagent which 
mediates the cyclization of 1-alkyn-4-01s to the isomeric 
2,3-dihydrofurans in a single step. 

At the outset of our studies we proposed that tertiary 
amine-metal carbonyls' might serve as effective catalysts 
for the single-step conversion of alkynols to endocyclic 
enol ethers. We found that oxidative decarbonylation of 
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chromium or tungsten hexacarbonyls with trimethylamine 
N-oxide (TMN0)'followed by addition of alkynyl alcohol 
l8 gave facile conversion to the cyclic chromium and 
tungsten oxacarbenes 2 and 3 (Table I, entries 1 and 2), 
but the corresponding dihydrofurans were not observed. 
In contrast, the reaction of molybdenum hexacarbonyl/ 
TMNO with 1 produced dihydrofuran 49 without molyb- 
denum oxacarbene formation. 

This reaction is modestly catalytic, with the best 
preparative yield and reproducibility observed with 50 
mol 5% of molybdenum hexacarbonyl and TMNO (entry 
3).1° Triethylamine as cosolvent accelerates the cyclo- 
isomerization reaction rate, whereas tetrahydrofuran or 
acetonitrile inhibits the reaction. Cycloisomerization is 
also promoted by the use of dimethyl sulfoxide (DMSO)" 
in place of TMNO, but no reaction occurs unless exogenous 
triethylamine is added. Substrates with C(3)-heteroatom 
substituents such as 10 and 12 tend to undergo elimination 
with both the molybdenum- and chromium-based systems 
to give furan derivatives 11 and 13, respectively (entries 
6 and 7).12 

We presume that cycloisomerization proceeds by initial 
rearrangement of an q2 metal-alkyne complex 14 to a 
vinylidene complex 15.l3 Base-induced cyclization of the 
alcohol nucleophile might then afford the cyclic anionic 
intermediate 16 (Scheme I). Although p r ~ t o n a t i o n ~ ~  of 
16 at C2 would provide the neutral carbene 17 (as observed 
for the chromium and tungsten cases), protonation at  C1 
affords the dihydrofuran 4 and regenerates RsN-Mo(CO)5 
as a potential catalyst. The formation of dihydrofurans 
at  room temperature in the molybdenum-based system 
suggests that the activation barrier for 16 - 4 is signif- 
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Table I. Products from Reaction of Alkynolr with M(C0)JTMNO 
entry substrates conditionso product (yield: % 

MesN-Cr(CO)s* (1 equiv), EhO, 120 h " - y O ~ c r ( C O ) s  
OH 

"4 1 
\-H 

1 

U 

2 (59) 

F q - y W ( C O ) ,  2 1 W(CO)s (1 equiv), TMNO (1 equiv), EhO, 120 h 

3 1 

U 
S (24) 

"Q MO(CO)~ (0.5 equiv), TMNO (0.5 equiv), EtsN, EbO, 60 h 

4 (71) 

" O q J  + 0 Mo(CO)~ (0.5 equiv), TMNO (0.5 equiv), E m ,  EhO, 92 h 

HO 

4 

8 I 5 
(a. 9:1, combined yield 59%) 

Mo(CO)~ (0.5 equiv), TMNO (0.5 equiv), E t N ,  EhO, 72 h 

8 S (52) 

MO(CO)~ (1 equiv), TMNO (1 equiv), E t N ,  EbO, 19 h "yL 
10 11 (58) 

7 Mo(CO)s (0.5 equiv), TMNO (0.5 equiv), EtsN, EhO, 12 h 

Ns 
12 13 (60) 

0 M(CO)s and TMNO were dissolved in EbO (0.1 M) and E m  (0.03 M) under Nz a t  20 "C. The solution rapidly turned green (M = Cr), 
brown (M = Mo), or yellow (M = W), and after 30-60 min the m y 1  alcohol was added and stirred a t  20 "C for the time indicated. 
Dihydrofuran producta were isolated by evaporation of solvent followed by silica gel chromatography (pentane/EhO/l% diethylamine); 
m b e n e  products were purified by silica gel chromatography (pentane/EhO) and recrystalliied (pentane, -78 "C). * Preformed Me&l-Cr(CO)b 
gave better yields than those obtained from in situ generation from Cr(C0)a and TMNO (1 - 2,34% yield). C Isolated yields. 

Scheme I. Proposed Mechanism for 
Cycloisomerization of 1 - 4 

P h g 0 & H  

H 

15 17 

icantly lower for the molybdenum compounds than for 
chromium and tungsten analogs. Our observations may 
constitute another manifestation of the enhanced ligand 
lability of second-row organotransition metal com- 
poundS.lsJ8 

Recent advances in asymmetric synthesis provide a 
variety of chiral, nonracemic 1-alkyn-4-01s as readily 
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available substrates for the cycloisomerization process 
described herein.17J8 For instance, our synthesis of 
furanoid glycal9 from compound 8 represents a formal 
synthesis of the anti-AIDS nucleoside 2',3'-didehydro-2',3'- 
dideoxythymidine (d4T, 18; eq 2).% 

MO(CO)s 0 (twosteps, HO H tc YR 
8- Me3N0 yp--&+ * N q o  (2) 

rac-0 d4T (1 8) 
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